AD-A193 3532 ADAPTIVE IDENTIFICATION BY SVSTOLIC ARRAYSCU) NAYAL
POSTGRADURTE SCHOOL MONTEREY CA P A WILLIS DEC 6?7

UNCLASSIFIED F/G 12/4

I T I L L A L M I O S ST A T N e O R S O S S U R T O T U DU SR U "'.-",:A';:l“:‘l'“"

. \NARA) 5" \]
NP K)
\ ”~'[".,.' o

T

— S
. n'iu:;‘
K §2s Bz :
losry
—— t.’ m =
o -7
=" Iz %

A
s gl pe o

MICROCOPY RESOLUTION TEST CHART
JREAL .o \TANPARDS-]963-4

e 8
~ 5l

5%’
L,

G % ety

o 235

.‘v . -
» »
k’\" : "-).n'-.l' 2
g e

r

- -
':'::":{"";:'." Y
ey XA

LY

g
Y

0 () >
N TN A e
AL DN OO
R G O A A YA

. ~ N
o o, - 5 Pl
RN AN NN % z '--'fE\ A AR LA SN LGN
TN MR ", : Alal i e, AN \-"*':}' "\ ‘ " \-\ \-"'-'. Y LS AN

RIS SIS dageaant - N L WTTOBUNU T WU R N RO CLata Nr Lt bk de Ve Mt et 8y 0y R T O T R RO IO TN TS

["'3‘

o-y.

NAVAL POSTGRADUATE SCHU(I_ .,-.»
Monterey , California >

AD-A193 532

: DTIC o
ELECTE e

s Y31 nseD ;:;{:3;:,
THESIS &

: ADAPTIVE IDENTIFICATION B
' BY SYSTOLIC ARRAYS B

by
Paul A. Willis 3 o

) .'
December 1987 35 A

\
Thesis Advisor Roberto Cristi Batay!
M

Approved for public release; distribution is unlimited. o

R A A e A O ~am nr .
OO0 v PO a0 P I AY NN L) ~.~.le~~. N N VAL g

N T N T I T T R IO TR T O 684 R A TR AL AN (M a¥3'a s L2 aR (A LA Bl R ot an VN UWUN TN W RS 7R " T

P

URITY CLASS/#'CATON =S SAGE
RN . RN
ZS -7 E—
- REPORT DOCUMENTATL(_JN PAGE // < LT <z
5 a. REPORT SECURITY CLASSIFICATION to RESTRICTIVE MARKINGS
i IFIED e
P 2a. SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION / AVAILABILITY OF REPORT
g Approved for Public Release;
2b. OECLASSIFICATION / DOWNGRADING SCHEDULE Distribution Unlimited
N " I PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
t
W ¥ % NAME OF PERFORMING ORGANIZATION]6b OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
i (If applicable)
. Naval Postgraduate School Code 33 Naval Postgraduate School
K} 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
,g‘
:: Monterey, California 93943-5000 Monterey, California 93943-5000
; .
S"
- 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION . (If applicable)
{
t
> 8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
4y PROGRAM PROJECT TASK WORK UNIT
i’ ELEMENT NO. | NO. NO ACCESSION NO.
[
b': 11. TITLE (Include Security Classification)
O
ADAPTIVE IDENTIFICATION BY SYSTOLIC ARRAYS
b 12. PERSONAL AUTHOR(S)
::. o Willis, Paul A.
‘ 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
N Master's Thesis FROM T0 1987 December 68
R -] 16. SUPPLEMENTARY NOTATION
& .
&
]
& 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identfy by block number)
‘ FIELD GROUP SUB-GROUP Systolic Arrays, Adaptive Identification, Parallel
W Processing, Cordic Algorithm
’QI } :
':;v 19} ABSTRACT (Continue an reverse if necessary and identify by block number) Ala e TR J
\ A
l‘g) . !
! -~) This thesis is concerned with the implementation of an adaptive
identification algorithm using parallel processing and systolic arrays.
x In particular, discrete samples of input and output data of a system
¢ with uncertain characteristics are used to determine the parameters of
[its model. The identification algorithm is based on recursive least
4 .
P squares, OR decomposition, and block processing techniques with
W covariance resetting. Along similar lines as previous approaches, the
identification process is based on the use of Givens rotations. This
E approach uses the Cordic technmique for improved numerical efficiency in
‘Al performing the rotations. Additionally, floating point and fixed point
0" arithmetic implementations are compared. , ' S C
Dt ! . - .) - .
" ' [ot N . R v ! ’ \"l 1
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION =
EXuncLassirieorunumiteo [J same As RPT [J bTIC USERS UNCLASSIFIED :
" 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | <2c OFFICE SYMBOL
B\, -1 Roberto Cristi (408) 646-2223 Code 62Cx
,:o DD FORM 1473, 8a MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OFf THIS PAGE
‘y All other editrons are obsolete % U.S. Government Printing Offies: 19080—404-24.
N
‘u",: 1
sh)
- . - - - - ~ ~ - - - B g > (AW N
) Radt) ‘.t,u".-". SOSIM S e ".t'lo o8 ?! X .sﬁeﬂ. W, e l.q.oo "" Y 00, 00,8 \' \oo. " 0.0.0 c.l. U M K M MM N M WM

T T I R o O T R R R R R R o R OO O T O O O R O O O O O O = oo

h i

0!‘

Approved for public release; distribution is unlimited. '::‘
4

*

1)

Adaptive Identification ::

by Svstolic Arrays o

M

l:r

by "

T ;:.

l’v

Paul A. Willis 2

Lieutenant, United States Na "

B.S.E.E., Purdue University, 1978 ~
Submitted in partial fulfillment of the '
requirements for the degree of 4

s:':

¥

. MASTER OF SCIENCE IN ENGINEERING SCIENCE E:
2

from the ::»

St

U
NAVAL POSTGRADUATE SCHOOL . :‘:»
December 1987 'S
4

N

o

ON

,.

Author: e
W
o
Approved by: o

Shent Michael, Second Reader
Q a*

Vincent Y. Lum, Chairman,

w of Ccmputer Science

Gordon k. Schacher,
Dean of Science and Engineering

s e DRI W

2

R P EN RN
7)‘~;3 2

& 5y 5

L

% NN "'“"» S G A s A R R S R R VR

.......

] "o 0N
RSO Mt I W

ABSTRACT

This thesis is concerned with the implementation of an adaptive identification
algorithm using parallel processing and systolic arrays. In particular, discrete samples
ci input and output data of a system with uncertain characteristics are used to
determine the parameters of its model. The identification algorithm is based on
recursive least squares, QR decomposition, and block processing techniques with
covariance resetting. Along similar lines as previous approaches, the identification
process is based on the use of Givens rotations. This approach uses the Cordic
technique for improved numerical efficiency in performing the rotations. Additionally,

floating point and fixed point arithmetic implementations are compared.

Accession PFor

DTIC TAB 3
Unaumnounced]
l Justifieatyon__ .]
l__.‘...._.._.-,.._- [P S—— |
| By - oo e e

, Dtstributten/

1

(Dist Special

1)

| Avatlabllity Codss
~ lavatl amd/or

NTIS GRA&I o

L XX B

WY

T R T S G O o T NS N T SN

NV

0

rp il RN

. me 1 ein ar par £ Aat B2t 0ab Buy Bat Oaie Peb fal TR PR 00 0t g 1 Vp 640 000 000 A AN 40" AV AAtEIR it it e Yy ¥ e ¥y

TABLE OF CONTENTS

B R

-y

o o

' I INTRODUCTION ..o e e e e 9
A, BACKGROUND ... i i i e e e 9
B. IMPLEMENTATION CONSIDERATIONS 10
I1. SYSTEM IDENTIFICATION METHODS 12
A. LINEARSYSTEM MODELING, 12
X B. SOLUTION OF SYSTEMS OF LINEAR EQUATIONS 13
.': C. QR DECOMPOSITION ...ttt 14
:s D. RECURSIVE LEASTSQUARES i, 16
:z E. BLOCK PROCESSING AND COVARIANCE
RESETTING ... i e et e e 17
I SYSTOLIC ARRAY IMPLEMENTATION ot 20
A. IMPLEMENTATION OF ALGORITHM 20
B. GIVENSROTATION i i it 20
C. CORDICTECHNIQUEt ii i 23
D. SYSTOLIC ARRAYSo i 27
IooGeneral . .o e 7
2. Tnangular Arraycciiiniiiiiniin i 29
3. Linear Arrayoii i e 31
4. The Use of a Second Triangular Array as the Solution
SEClION .. e e 33
Iv. SYSTOLIC ARRAY MODELINGo, 38
A. GENERAL 38
1. SystemEquations............. i 38
2. ChoiceofInitial Values, 38
3. Choice of Block Length, 39
4. Fixed Point versus Floating Point 39
B. SYSTEMS WITHOUTNOISE 39
4 .

R AR R s TNl

1. Results Using Floating Point Arithmetic

2. Results Using Fixed Point Arithmetic

C. SYSTEMWITHNOISEo i

1. Results Using Floating Point Arithmetic

2. Results Using Fixed Point Arithmetic

Y V. CONCLUSIONS ottt ettt e e

APPENDIX: PROGRAM LISTING FCR SYSTOLIC ARRAY
SIMULATION . e

LISTOF REFERENCES e

BIBLIOGRAPHY .

. ah'a 0°0.0'8.8 0. 8.0 b Bat $a¥ §*
et Vi, T R NI G 1.“;...- -.‘ (TN Y] “ . ®. "':{

- o
A

LIST OF TABLES)

1. THE BINARY CORDIC CONSTANTS .
2. TIMES OF AVAILABILITY OF DATA 37 -

...............................

3. TIME TO CONVERGENCE (NOISELESSCASE) o0t 44 ~5,

&

A
XXX

o

Pq f\l 3
'l

A 5

N o A]
f\:":‘ . 1,

f
X0 ®

PR
sy By &
c'"d‘{

g

o ALY !\.".'-_s‘\.}\'-.'\’-\. ‘._.\..__._'..,,' et A A i e Lol

© INRUAYEDUY U A UYL A ¥4

2.1
2.2
31
32
3.3
34
3.5
3.6
3.7
38
39
3.10
311
312

3.13
3.14
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9a
4.9b
: 4.10

e el TA YA T AR AT S oy e bl e r et ah ek S S Lk 10 s 0 A TR i e — Sa——
LIST OF FIGURES

Simple Linear Systemttt e 12
Time Line U 18
Example of Row Operationsovtrinininiiinnnenn. 21
Vectors i B2 ... i 21
Example of Givens ROtationscvtvitni i it 22
General Block Diagram of CORDIC Computation 25
Set of CORDIC Rotationscvviiinininin it 26
Algorithm for CORDIC Rotationsc.ovtvinrneninann... 27
SYStOlC ATTAY .. ittt e e e e e 28
Systolic Array Implementation for Parameter Estimation: Old Design 30
Definition of Cell Operations for Triangu.ar Section 31
Data Flow in Triangular Section i, 32
Definition of Cell Operations for Linear Section 33
Systolic Array Implementation for Parameter Estimation: New

Design i e e e 34
Solution of System of Equations 35
Data Flow Through Second Triangular Arrayco0vvnnnn. 36
Floating Point, Without Noise, N = 3 i, 40
Floating Point, Without Noise, N = 5 41
Floating Point, Without Noise, N = 10 i, 42
Floating Point, Without Noise, N = 15 i, 43
Fixed Point, Without Noise, N = 3. it i 45
Fixed Point, Without Noise, N = 5., ...t i e 45
Fixed Point, Without Noise, N = 10...... ..ot 46
Fixed Point, Without Noise, N = 1§o i, 47
Input and Output Signals Without Noise Present 49
Input and Output Signals With Noise Present 49
Floating Point, With Noise, N = 3, .. i, 51

- LI

“_ .r'.».-a_-.ra .-f.‘,'.- o J‘ .r_.f-r.rf‘ -"-'-‘fi‘ __ -rq'«w? .,\, o N

O et td® s o P Y

-

Aot Lt

Y AW Xy v
Ay

4.11
4.12
4.13
4.14
4.15
4.16
4.17

o, " aa¥e T2 " '."--
s MR I E Y

TR W

Floating Point, With Noise, N = 5 oo 52
Floating Point, With Noise, N = 10 33
Floating Point, With Noise, N = 15 34
Fixed Point, With Noise, N = 3 35
Fixed Point, With Noise, N = 5 .. i, 36
Fixed Point, With Noise, N = 10 i, 57
Fixed Point, With Noise, N = 15 i 38

I. INTRODUCTION

A. BACKGROUND

The problem of adaptively controlling systems with uncertain characteristics
depends largely on identification of the unknown system parameters. The ability to
accurately and quickly estimate these parameters, then, is of primary importance. The
state of computer development today has made this estimation possible in real time.

The goal of parameter estimation is to best fit an appropriate model to the input-
output data of the plant under investigation. This immediately leaves us with two
basic and distinct problems: the choice of a parameter model and the choice of an
estimation algorithm.

We desire to select a parameter model which relates input and output data by
means of weighted parameters, in the form

¥(1) = @T(1) 8 + (1) (L.1)

with y(t) and (pT(t) representing the output and signals respectively available for
measurements, and where 0 is an array of unknown parameters to be determined. The
term v(t) represents noise or other modeling errors. Though numerous choices of
model structures exist, linear models still remain the most desirable due to their
simplicity and the considerable amount of theory developed to analyze them.

Secondly, we need to choose an appropriate estimation algorithm. Again, several
possibilities exist, but the most effective in terms of converging is the recursive least
squares algorithm [Ref. 1: pp. 49-68]. This algorithm is implementable using on line
matrix manipulations, and the technique is based upon on line solution of a system of
linear equations.

The major drawback of recursive least squares is the computational complexity
involved. The size of the matrices grows with the complexity of the system to be
modeled. Although available microprocessors are effective for low order systems and
slow sampling rates, more complex problem require improved capabilities. These
capabilities are provided by systolic arrays built using VLSI technology.

’ ot 'J'-;J";I\I_‘f . q'\.l‘ .\‘lf'q"

e

'y -
'y 49

o
I‘.

LIV

P
(‘r"a

O S
N A

® LA

L4

-

-

This research analyzes the on line recursive least squares identification algorithm.
This algorithm processes blocks of data, using values gained from the previcus block as
initializing values, in a method known as block processing. This block processing
technique is based on QR decomposition, discussed in the next chapter.

B. IMPLEMENTATION CONSIDERATIONS

The particular computing structure we are considering is based on the systolic
array (or wavefront array). The systolic array consists of an array of individual
processing cells, each provided with a local memory and processing unit of its own,
connected in such a way that each cell communicates only with its nearest neighbors.
The array is designed so that data is continuously clocked or pumped throughout in a
rhythmic fashion; hence the name “systolic.” The cells are simple in that they are
required to perform only basic mathematical functions on the data received from
neighboring cells. Special purpose hardware incorporating systolic arrays can be built
using VLSI technology. The advantage with this technique is the fact that a complex
operation is performed by several processors at a time, thus increasing the throughput
of data.

Previous authors [Refs. 2,3: pp.29 - 37, pp.255 - 274] have presented parameter
estimation algorithms using systolic arrays. The general idea has been to solve a
system of linear equations in two stages: first, by triangularization of the matrix of
coefficients, and second, solving by successive substitution. The previous algorithms
have all been similar in that they used a triangular systolic array to triangularize the
matrix, and a linear systolic array configuration to solve for the parameters. It turns
out that the arrays for the triangular and linear sections are different, and furthermore
the linear section requires operations such as divisions which are hardly implementable
by simple processor operations.

In this thesis we present an algorithm which is based on two identical triangular
sections. It is characterized by the fact that only orthogonal operations are involved,
thus making the algorithm numerically more stable, and easily implementable by simple
shift and add operations. Also, one of the advantages is that only two different types
of cells are necessary (as compared to four in the previous implementations), resulting
in a simplification in the manufacturing process. These cells perform different
functions from those used by the above referenced authors. The Cordic technique is
used by the cells to perform vector rotations, resulting in improved numerical
efficiency. Though more total cells are required in this implementation, the cost of
additional cells in a VLSI scheme is considered to be minimal.

10

W

"-'\}\”\,‘\{-’NJ’IJ\';-J..-\’.:'.-’-f.,-f‘ '-I'-".“'f'd' -,. 'J'J'"-.h.(‘g 'V‘- “."" _.’.;_“, - ‘ ~

SRS % e
' - -- ’

- e .
LA O XN

v 7§ ¥
LAY N -

A

R Al ™

i'd'l"f

-

{'v.;l‘,' ‘(“"I1- "ic"-.'(-{‘f-f'ﬂ b

PR T

g

"x,.g..-'.-\“ - ?

-:.—
[y

~ %

v

N N W G e
"..
P LY

The use of fixed point versus floating point arithmetic is considered during this
investigation. Because fixed point operations are based on simple shift functions and
finite registers, which are simple to implement, it seemed advantageous to use fixed
point values. However, since input and output data do not naturally appear as integer
values, there was concern over loss of accuracy due to necessary scaling and
truncation. With proper choice of scaling factors, it will be shown that the integer
methods perform as well as floating point.

This thesis is divided as follows: Chapter Il discusses the methods of svstem
identification, i.e. solution of systems of linear equations, QR decomposition, and
recursive least squares; Chapter I[II discusses the Cordic technique and the
implementation of the systolic arrays. Chapter I'V discusses the simulation results, and
Chapter V draws the final conclusions. A listing of the program used to simulate the
systolic arrays is found in the appendix.

11

L TR e N N AT L T S P I DN R A 'R TR M ALY VAN -f.f'f.-‘-f.f-f-f--’-/’.ﬂ.f
‘J‘ f, o, ,...- .-‘n .c. e lol.o. " W X O.. N ." 3 -'\ . ¥y >N e

. 4 . J

Sl GATE Gl SR Sl S) S G ud LR AL Pl S E N 2l S

N
N

1

sy

RIS OF -

ol
'

o STV LID ik 2

N o T T BN AN Y

IR PCAT

ey

f

? ,

..
al. Lo

o aavs gt a hts s M u'® 58 3 2.2 B Ll v af sl el abas R N TR PRI T N R AR T KR R N A N YV W R F VW A PN W Ve

kl
“.
B
):‘
“'i:
II. SYSTEM IDENTIFICATION METHODS
"
K)
s A. LINEAR SYSTEM MODELING Y
:E The first step in any parameter identification process is to model the system in
) mathematical terms. To this end, consider a general system with a single input u(t)
X and single output y(t), as shown in Figure 2.1.
"
Y
t
2
s,::
:,. u (t,) > system > ¥ (t)
.
8

Figure 2.1 Simple Linear System.

This system can be described by the linear, constant coefficient difference equation

TP R

y(t) + ay(t-1) + ... + a y(t-n) = byu(t-1) + ... + b_u(t-m) + v(t) _ 2.1) J

where the aj’s and the b;’s are real constants, and the equation (and system) is of n'h
order. The v(t) term denotes a noise variable. Equation (2.1) represents a class of
" discrete systems, known as recursive systems because the output depends not only on
the input but on the previous output values also.

" An alternative way to represent the above equation is by defining the parameter X
: vector as

a T -

- 6 (a,, 3y, ... a5, by,by, o b (2.2)

s and the regression vector of input-output data as

4 QT () = [-¥(t-1) , oo ,o¥(t-0), U(t-1), ..., u(t-m)] (2.3) .
¢ 12 7
y

!
4 .
1 - - v e" 18 DR RO T TEAV R M Py AP AN P gy T Ty o 1 r i T w AT «
‘a‘!‘! :'l‘:“.ﬁ ' \' ? N ."' N IR .. S o L o o W & * . ."

s

AR R AV A)

e .
! NN

BV R M Y R i S i At

Now, using (2.2) and (2.3), we can rewrite (2.1) as

¥ = @T(1) 0 + v(t) (2.4)

The vector O contains the parameters which we want to determine. This can be
obtained by sampling the system at some sample frequency (sav, ®,) and accumulating
a numerical sequence that describes the system at discrete time intervals. We can
express this in the form of a system of linear equations by considering the sequence at
several instants of time. [deally, if the number of samples of u(t) and y¥(t) (i.e. the
number of equations) equals the number of unknowns (m + n), we should be able to
solve exactly for 8. However, it is normally the case that the number of equations is
greater than the number of unknowns. This system may or may not have a solution.
Ideally, in the noiseless case (v(t) = 0) a solution exists, regardless of the number of
equations. However, since noise and numerical errors are present, we look for the least
squares solution of the system of equations, i.e. for the solution which minimizes the
error

&0) = || AB - b ||2 (2.5)

This always exists, although it might not be unique.

B. SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

In the previous section we saw how the linear system could be modeled by (2.4).
When numerous samples are taken, we end up with a system of linear equations, such
as

o = @T(ne + v
V) = @T(t-1)8 + v(t-1)
¥(t-2) = @V(t-2) 0 + v(t-2)

This system of equations can be expressed in the form

A9 =p (2.6)

13

f.l-f‘-f. L

A

¢ -’(‘-\{ e A, T

e R

IR

A

I R R R OO R O T O OO R U Y

whire Ae R™D 9e R, be RM. Now, when m = n, and A is full rank and
invertible, we can solve uniquely for @ as

0=Alp .7

However, in general we find that m > n (i.e. more equations than unknowns). In this
instance, the solution of (2.7) is defined in the least squares sense as

where ||AO, - bl| = min, ||AO - bi] .8)

s

Although (2.8) can be solved by pseudoinverse, this technique is not attractive due to
the presence of matrix inversion. An alternative way is to triangularize A in (2.6) and
then solve for @ by successive back substitutions. This, of course, is the basis of
Gaussian elimination techniques.

But now we face the dilemma of triangularizing an array when m > n. The
solution is to triangularize the upper part of the A matrix, leaving one or more rows of
zeros at the bottom as a result. This will permit us to solve for @ in the least squares
sense, as indicated in (2.8). This is known as QR decomposition. (For review of least
squares estimation in statistical theory, the reader is referred to the literature.)

C. QRDECOMPOSITION

A means to solve for the least-squares solution of a system of linear equations is
provided by the QR decomposition of a matrix [Ref. 4: pp. 209-215]. Consider again
Equation (2.6) with m > n, where 8 = 0, (i.e. least squares sense). We can factor the
m X n matrix A as

A=QR (2.9)

where Q is am X n orthogonal matrix such that QQU = I, and g is defined as

2.10;
R = (2.10)

'n"-"'\'d"\"-f-*-'f.;

. Y B W W »
.1‘0'. l"l"l‘. W9, '.I- t ¢ 40N -‘Io .1 .a'o'.n.n

) T o I O O O O R R o va 892 8% 82 %5 ' R s 8's A'ad Rt et A 00 8'0,8° R R b R0 R0 DY |

l‘g,

o

"

N

where R is an n X n upper triangular matrix, and O represents a zero matrix. Now we X
. (]

can rewrite (2.6) as :::
R ﬂ 1 D

Ty — 2.11)

_0—— o = Q E = —ﬂ—— () "E
.. 3

-

And finally, from (2.11), it follows that a
' i

)

Now, the solution of (2.6) in the least squares sense is the same as the solution of ,

(d

n equations and n unknowns in (2.12). ;:"E
Proof. Consider the set of equations :.E{

: v
e=AB-b=QRO-b 3
;

where e represents the least squares error vector. Then, ..E}
2

eTe = (b7 - 8TAT) (A6 - b) i

QTe=RO-Q'b = RO-P

va

L e

PR G

Then, we have

ele = eTQQTe = || RO - B II?

T

ST

= JJRO-B, |2 + 1B, 112

YYD

A d

;‘_"."'.7":

. N
LA A

We see that Bz is independent of 8. Therefore, llf.zll2 is minimized when

A o T I
e

8, = R!p, or RO, =P, o

e
> ol

-

PR NG

15

- e e R PR R Mt A AP - - . _
e, ..l‘_ Y » ..' S I NN o ,‘-\'.‘.' N T R T A A ('J' a TS b -".'"- ’\"\ - "_."v'h " '.' \"\-' A = ?

TN . : 0
e dim €At Fir met BAY ait 228 Bab B0 gt Bab ik R 6 aut Rt et 2 oL Sa avs Y8 8% 02 Ala 8V Ve Ma SV atu 0ty Sal " 9720 a¥rad Paf taf vul g oy ¢ e 0,04, 4.0 9.8 0,00 WINNY

o Based upon these results, we see that we can now solve (2.12) for 6 by back
substitution.

There are a number of methods available that can be used to compute the upper

aﬁfc; triangular matrix R. In particular, the Givens rotation [Ref. 5: pp. 497 - 499)] is
-f} attractive for systolic array implementation since it is based on manipulation of pairs
t'; of adjacent rows, thus requiring minimum broadcasting of data. Cordic techniques are
" used to implement these rotations, and are discussed in the next chapter.
EN) ‘
4 D. RECURSIVE LEAST SQUARES
»;' The problem now is to determine a recursive algorithm that can be used to
“
kN estimate the parameter @ in the model
4 - oT)0 2.13
.: y(t) ¢ (9] ¢2)
"
&
‘,{!‘ We desire to estimate 0 from a set of measured data y(t) and @(t). In the least squares
" sense we choose this estimate by best fitting our model to the available data. That is,
’ we wish to minimize €, where
"
0:: T A
¥ el = Iy(t) - @ (1) 6] (2.14)
8 A . : . A . :
"I 0 refers to the estimate of O at any time t. In particular 6l satisfies the equations
3 ¢T(t-1) y(t=1) 2.19
. * é‘ = * - A(t—l)o‘ = y(t—l))
3:" #7(0) ¥(0)
o
X A
. It is possible to.show that 8, can be recursively computed as [Ref. 6: pp. 17 - 22}
N -
b A t)(v(t)- 0 t
b b, = 8+ Py —20L0 -8 9w 216
¥ 1 + @7 (1) P(t-1) (v)
Y
; where P(t) = (A(t)TA(t))‘l satisfies the recursion
.
' 0 @T(t) P(t-1 _
3 P() = P(t-1) - P(t-1) ——r e O P D) 2.17) -
‘ 1+ @'(v) P(t-1) @(t) _
i
oy 16
4.
) '
v, 1

1V
4

A P ; ool WY Wy o € R R R R R R T T SO oY
o G A VRS AR PR S A G L R AR AR ISV OA TS IR IO 3 ‘

To this point, we have ignored the problem of the existence of the solution. If
o A(t) is singular, then P(t) does not exist. Furthermore, we can not initialize A(-1) = 0
' because this would leave P(-1) undefined. The solution is to incorporate initial
‘.;:A conditions into A(t) so that P(t) can be computed at each t. Choose A(-1) = ¢,
';;: where 6, > 0 is some arbitrary constant, and [is the identity matrix of appropriate
‘e
jf; : dimensions. Then, by algebraic manipulation, Equation (2.15) becomes
e #7(t-1) y(t-1)
B P (2.18)
2 oT(0) | y(0)
. A(-1) [2 JA(-1)d,
o
K0
v ¥
‘;E The solution to (2.18) can be made fully recursive using (2.16) and (2.17) and
K}
. appropriate initial conditions.
W .
‘:‘.;: E. BLOCK PROCESSING AND COVARIANCE RESETTING
:r:: In the previous section, an algorithm was described that allows us to estimate the
) parameter O recursively. However, note that from the definition of P(t) (also known as
‘ the covariance matrix)
,,
e T -1 = o) oT(i))
P(t) = (AT A@W)! = (5 1 + ¥ @(i) 97(i)) (2.19)
. 1.0
b _
. that P(t) = 0 as t = % [Ref. 6: p. 21]. Therefore, the algorithm loses sensitivity as t
i::' increases, and later values of @ may not be as accurate as earlier values, especially if
: our model changes with time. There are two possible remedies to this problem: the use
[of a “forgetting factor”, or the block processing approach.
The forgetting factor minimizes the error
:| 2 ! -k T 3 2 2 o
s Ic(t)ll = lE AT (y(k) - 67 (k)0¢4y)" + 00 | 011 — 0o|r (2.20)
=0
W
7 where 0 <A <1 is the forgetting factor. This has the effect of assigning a higher weight
3 to more recent data.
1!
e 17
1,V
!‘0‘
)
':‘:
% »

>
._-_._'_'._'\f._ o _ PR AT ‘\- '\: '-) ._.

s . ..
W e A A e AT W N A e e et At A A et AL S
‘l“)‘l“,l*.’.. ey N 1 X " VL L Ly o ‘v LA

1RGN MRS Y NG S DR LA

LY) + TS AN/ ot at val AW a¥ ¥pig” U U g g% Bv v (] l.d'.)‘-.l tt'».-- vp 8'a 4"

The block processing approach, on the other hand, divides the time set into
segments of equal and fixed length N as in Figure 2.2. At the end of each time

TR S B R I | e T
41 — I — l oo m———iipe time
kN (k+1)N

Figure 2.2 Time Line.

block, we reset the covariance matrix P(t). Although it can be reset at any time, for
convenience we choose the end of each block, and P(t) now becomes

PO = LA t = kN-1 2.2
Equation (2.17) otherwise ’

Therefore, the beginning of each time block is treated as a new, initialized period.

It has been shown [Ref. 2: p. 20] that an external input u(t), sufficiently rich in
frequency (n sinusoids), together w1th blocks I, of sufficient length N provide a
guarantee for an estimation @ = 0° where 0° represents actual parameters. The effect
of various lengths of N will be investigated later.

If we apply the considerations above to the general case, we can see that the
parameter estimates at the end of each time block are given by

¢7((k+1)N-1) y((k+1)N-1)
P I R) .
”ol UoikN

This will be the foundation with which we build our recursive parallel algorithm.
Although the algorithm presented in this chapter assumes a single input, single
ouput (SISO) plant, it can easily be extended to the multiple input-output (MIMO)

18

OV A Y

’l L) -*-}- 3 “J\' B r." ..- - -'.' \'l" L) " ~

N

™

. - * » L]
N bt 1" 0e® St 00 4

(e

r
F
K
”
»

T T T o T S R R R T R R L L . o PN UL U v gt R pA e ate ot pie e ng®

plant [Ref. 7: pp. 25-27]. Additionally, we assume our plant to be causal
Furthermore, because the problem of order determination is necessarily complicated, it
will be assumed that the order of the plant is always known to the designer.

2 M BE S

L0 BB B gE- ghe =Py

19

T I '-F'f'f'."l'f.'{'f'af"l‘,'l"f'f'f; .'-'_-'_-,-f- . .-_; ..’.‘...“.'_.*.- '\v‘-"-ﬂ"‘ ST

R X

il - T Sotly <

-

<

III. SYSTOLIC ARRAY IMPLEMENTATION

A. IMPLEMENTATION OF ALGORITHM

We now turn our attention to the solution of (2.22) using systolic arrays. In
particular, (2.22) is suited for parallel computation. As described in [Ref. 2: pp. 23 -
25], the identification problem can be reconstructed into a set of linear equations as

Ry e(k+l)N = B 3.0

with R, in upper triangular form. We see here that 0(k +1)N an be computed by using
two processors in cascade: one to compute R, and Bkl, and the second to compute 0
from (3.1). Note that implicit matrix inversion is not necessary since R, is in upper
triangular form.

As discussed in the previous chapter, we initialize the array at the beginning of
each time block to 6, (left half) and 0,9, (right half). This has the effect of
initializing the R, matrix in (3.1) to an upper triangular form. Then, at each discrete
time n, an array of data @(n) and y(n) will be passed to the systolic array. The task of
the array is to “re-triangularize” the data at each clock pulse, so the matrix remains in
the form prescribed by (3.1). It is then a simple matter to solve for 9(k N This
technique is based on QR decomposition as the means to triangularize the data array.

The value of 6, relates to the confidence we have in the initial estimates. The
larger the value of 6, the lower our confidence. Equations (2.18) - (2.22) illustrate the
role that g, plays.

B. GIVENS ROTATION

An attractive and easily implemented method of triangularization by QR
decomposition is provided by the Givens rotations. The reason for this choice is the
fact that the Givens rotation operates only on adjacent data, making it suitable for
systolic array implementation. The object is to combine two adjacent rows in the
matrix, forcing zeros in the appropriate positions so to obtain an upper triangular data
matrix. Figure 3.1 shows an example of triangularization by successive Givens
rotations.

20

\"‘l. ..I

5 j

AR A U TUT. VLU WL L FE NUNENAN AN LRSS RO RN R Ry) J MUY VY UNSALCHVY (a N

a;; 212 243 811 2312 343 2 812 83 8;1 812 83
81 322 83| = | O 2y x| —» | O ay ay| » | 0 2 ay
a3, 23 a3 83; 23 233 0 a3 aj 0 o0 333'

Figure 3.1 Example of Row Operations.

in®
3,1 - &4}, May be considered as a sequence of vectors (x,y) in R? as in Figure 3.2.

The underlying idea for this scheme is that any two rows of elements a2

y
2i+1,j
a
xX
*i,35
‘ Figure 3.2 Vectors in R2.

If we rotate a vector (a, i &+ l-i) by an angle @ so to make it parallel to the x axis, then
the y value (a, +l’i) becomes zero. This same rotation @ is then applied to the
remaining (x,y) vectors in the affected rows (in this case, rows i, i+ 1) to ensure
algebraic equality. Next, the sequence of rotations is repeated for the remaining pairs
of rows (i.e. rows i+ 1, i+2; i+2, i+3; ...) in order to force zeros in the correct
locations that leave an upper triangular matrix.

21

) e e i N,

"_ o

TN, i AN

o
. oy . s A . . - . - p A
\y ~ ‘\’\ ‘-'\r '-"4_ sl ,"4(. 'y A (.1 v’-'f o, .‘. l‘ o -f.‘._- ‘\-‘b" .\.~ e ,. ‘-'V .." "d‘.‘ f)

Recall that the data matrix is initialized to an upper triangular form (6,1). Then,
as we take samples from the signals in the plant, new values of @(t) and y(t) are added
to the matrix. By a sequence of Givens rotations, we can transform it into an upper
triangular matrix. An example set of rotations is shown in Figure 3.3, where the

[h
¢1(‘) ¢2(t) ¢3(t) 2, ay a1'31
2, 8 aj; 0 2y 25

0 a; ay 0 0 ag
0 0 agy 0 0 0]

Figure 3.3 Example of Givens Rotations.

operations performed by the systolic array at each clock pulse are illustrated. This is
repeated until t = kN (i.c. at the end of the time block), at which time the parameters
0 are solved for, the matrix is reinitialized, and the process is repeated.

The basis of the Givens rotation is the matrix

I, 0 0
Qpq) = |0 r(pq) O (3.2)
0 0 I, '
associated to each pair of indexes p,q € (1,n+ 1), with I 1 and 12 being identity matrices
of dimension (q-2) X (q-2) and (n+ 1-q) X (n+ 1-q) respectively, and r is a 2 X 2 matrix
of the form

opq) s(p.q)

P = -(p.q) p.q)

(3.3)

The matrix Q has the property that it affects only two rows at a time, i.e. rows q and
q-1. Application of the transformation Q(p,q) to any matrix A of appropriate
dimension yields

w9 u.§ Ta 20 ¥

e Y
Al Al)

n J%]

. . (3.6)
y = ycosd F xsind
where the top sign refers a clockwise rotation.
23
N T R T AN B AN DA AT L R AT B0 A T A A S SR LA SV

. A - - B Sl Bl]
0.8 0.8 Sl Sal G od PSS 60 S0 Va8 Yad) Yt g e rye "4

X X X
QpYA =] x 1 x (34)
X 0 x |+ q
X X X
'y
p »
provided c¢(p,q) and s(p,q) in (3.3) are such that
c(pa)ag,, + s(pa)a, = I
(3.5)

(p.q) g, = s(p) ag,;, = 0

In Figure 3.3, application of the Givens rotation Q(3,4)Q(2,3)Q(1,2) to the left
matrix results in the rotated matrix shown on the right. We see that to perform Givens
rotations, we must be able to calculate addition, subtraction, multiplication, division,
and squares. Next, we will see how to perform the rotatrons, by using add and shift
operations only.

C. CORDIC TECHNIQUE .

The CORDIC (COordinate Rotation Dlgital Computer) technique [Ref. 8: pp.
162-165] is particularly attractive in fixed point arithmetic for generating different types
of trigonometric functions. The principle involved is to rotate a vector (X,y) through
an angle @ by a series of “properly quantized” angular steps. The single rotations of
the vector (X, y) are computed at each step by a combination of simple add, subtract,
and shift operations.

Consider again a vector in the plane as in Figure 3.2. The vector is represented
by its x and y components. Rotating the vector through any angle & leaves us with
new rotated coordinates

X = xcosd £ ysind

2 TSNS S YT T

€, €,
-

.f“'-‘ E

PRy -" A

RN BT A LA AL AP b P

- .1'. ."(‘{.f-

> ?l'l._.'

vy
D

.......)
LA

< gt gt ag s g % atm 2R AR 1 Yak Yk Vb al "al *ad 2t "ahaltpd.” U TR N IR TR Y (A X A _Ba*

...........

P
: 3
' In the CORDIC technique, the rotation is performed in a sequence of angular ::
steps @, such that the sum of them approaches 8. The ®.'s can be positive or -
negative, so .—
’
) v
' =0, to .. % 3.7 .
; 0o .0 . (3.7)
) ’ .r
If we define Y, = %1, then we can express 8 as
n ' :
=Y vo (3.8)
N & 1t
The choice of the angles @, is determined on the basis of computational convenience.]
In particular, choose e;
Lt
ol e . b,
b ®, = tan" (27) i=0,l,.. (3.9) ¢
¢
; and consider a single rotation by an angle w,. By applying (3.6) and dividing by cos ::
} we obtain p
3 D
4 2
X
cos @, G EYEne =, A
o (3.10) -4
¥ .
;5;‘;: Y #5100 =y, 3
-
The factors x;"/cos @, and y;"/cos , are the rotated components of the vector (x,y).
Note that the new vector is not only rotated, but also scaled by a factor 1/cos .. "
Now, combining (3.7) (or (3.8)), (3.9) and (3.10) we can define a recursion o
Yot TR ERTE Ay = (3.11) :
Vier = o FX2T =5 T x2t = ky’ o
5

for the rotation by an angle y,®,. In binary arithmetic this can be implemented with '
simple shift and add operations. Figure 3.4 illustrates a typical system for the . -
determination of ¥,.

]

™9

i

Figure 3.4 General Block Diagram of CORDIC Computation.

We can easily compute values of @, i = 0,1,2,... and the corresponding scaling
factor k, as given in Table 1.) ,

For purposes of this research, we want to rotate an initial vector until its y value
is equal to zero. The algebraic sum of the sequence of predetermined rotations will
give us the angle 8 that the vector was rotated through. These rotations can be
encoded into & binary sequence y that identifies the rotations performed. This
sequence of rotations can then be passed to the remaining vectors in the affected rows.
Figure 3.5 illustrates a series of rotations for an arbitrary vector which we desire to
rotate by 30°. Note that in the figure, the desired angular value is approached quickly,
because), decreases by approximately half during each step. The Y sequence in the
figure would be (+1,~-1,+1,- 1, +1,+1,=- L +1.—1,+1,= 1)

In an ideal case as just presented, the value of |y| decreases during each step.
However, this may not always be the case. For example, consider the vector

3
r
Lol
'
Lo
’

[T e T A)

R S A

BN -

w9 aw -

-
"

| -

gt e

-
-

-

X

[Jav]

PaIr e

“nd

Wty e P N R R R I U A Y A et

R TR A TR N 0 Nal Uad Urh b Gad Nk AaRtal Sl tud st byy Sod Sol gl R e SR WY AN LA, o

TABLE 1
THE BINARY CORDIC CONSTANTS
i 27 o, k.
]
(degrees)
0 1.0000000000 45.00000000 1.4142135
1 0.5000000000 26.56505124 1.581138826
2 0.2500000000 14.03624340 1.629800596
3 0.1250000000 7.12501632 1.642484060
4 0.0625000000 3.57633432 1.645688908
5 0.0312500000 1.78991064 1.646492240
6 0.0156250000 0.89517384 1.646639215
7 0.0078125000 0.44761428 1.646743467
8 0.0039062500 0.22381056 1.646756030
o .
A
45° -|
(|
3.0. U L~
150k
N I W S S S L :.‘
01236567809

Figure 3.5 Set of CORDIC Rotations.

(x,¥) = (5,1) and @ = 11.3°. The first rotation in the CORDIC algorithm (see Table
1) would be -45°: this gives us a rotated vector (x,¥) = (4.2, -2.8) and a = -33.7°.
Note that the value of |y| has actually increased. To make the algorithm more
efficient, we modify the sequence ¥ to include the value zero. Whenever a rotation
causes |y} to increase, we do not perform it, and we set the corresponding Y, to zero.

C A Aty st . "ate et R T RN AT RN RN AT ARV N R U IS ON TP UV VU SR LY I UNY (T LW U 0 5% 2 28 0.8’ 0.4 S ‘But Bal gt

]
[t
‘ot
N
i" Then we continue on with the next rotation value and repeat the process. For the
03 example just cited, the next value to be tried would be 26.6°.

Ny : . R
" A simple algorithm to perform the CORDIC rotations can be seen in Figure 3.6.
N
;
'
D)
v INITIALIZE: ifx > Othenxy = X, ¥, =
3 else xg = X Yo = ¥
- ify > Otheny, = +1
' I

s elsey, = —1
o 0

fori:= 0toN—1do (* number of iterations *)

.“ .
'.'.: ify, = v.27'x; > ¥, then (* |y] increases *)
R
::'v: X415 X
) Voo = V.
Wy i+l “i
] Yisg:= 0
‘\- else
o TR T (U
L e= - -1
b Viep T Y TN
, ify, > Otheny, ,:= +!
:g elsey, .= —1
't end for;
e
e end.
3

-
B\
' Figure 3.6 Algorithm for CORDIC Rotations.

o D. SYSTOLIC ARRAYS

i 1. General

We now examine the parallel structure that will be used to solve the least

'.f' squares algorithm described above. We desire a structure that accepts a sequence of
\:' regression vectors @(n) and signal y(n) as input and then outputs the estimate for 0.
:

d
. 27
"
o
i
R

::! T A WY Y e N \. -_ N L et ‘,.',"}" g, } '.f‘ e n _'rl.l__/\f.'r\.’\-

\f' v-"(..r.‘-‘_‘n .’

(ATCERT S RINT & LOART AP SR TS
L) ® . (a0

[gk p S0

LI M N

-
N

2 S W

K

1]

N e mepnp-p-n- .
SR ARSI S

‘e gva° NN URUY UV OV Y AR AS 1, A AR X - el A 00 Vg PR bR e g o4 2% 2% a's e 4"ty

Specifically, we are interested in a high performance parallel strucuture that can be
implemented directly as a hardware device in order to deliver maximum throughput.
Systolic arrays represent a structure suitable for these characteristics.

The key to inexpensive implementation is simple and regular interconnections.
Additionally, we want to allow the computations to proceed concurrently with the

input, in order to maximize the throughput. This is known as pipelining. [Ref. 3: p.
257)

¢, (t) ¢, (t) ¢, (v) ¢ (t) y (¢)

'ty .
.

Figure 3.7 Systolic Array. f

A systolic array meets these requirements. Figure 3.7 shows a typical system.
As noted earlier, the array is simply a network of processors that are regularly
connected. The data is continuously “pumped” through this structure, thereby
minimizing overall execution time, since all the processors work in parallel.

It was shown that two processors would be necessary to solve (3.1). Previously y
used configurations have consisted of a triangular array (as in Figure 3.7) to compute

28

o -,

DN

- *a *" ", "y e - - - .
:',‘. \.." o"h .. r\(_'.* v -r_'._ RN et N N L .. - ot At

-

At atetata et atatalaain ba 2ty nia avat iR - S g awav A0 pevuig aBe' e et Re’ KA Pao 0a°ahec b= WAt Bat Gat et 9a® 0at & R O VW W W DUV W WU WU WL

i the upper triangular matrix, and a linear array to solve the system of equations. Figure
;i 3.8 shows the typical design for the case where d (dimension) = d. This thesis
. discusses an alternative configuration in which the linear section is replaced by a
. second triangular section identical to the first one. This new design is discussed later in
::: this chapter. Both designs use a single clock signal to control operations. We will now
-j:: , review the structures of the triangular and linear sections before continuing on to
& discuss the alternative design.

' 2. Triangular Array

‘:‘:‘ The triangular systolic array performs the rotations as described in the section
E:' on the CORDIC technique. The processors work simultaneously at each clock pulse.
4

The data regression vector @(t) and output signal y(t) is input to the top of the array,
and rotations are calculated at each clock cycle.

? The triangular array consists of two types of cells: edge (or boundary) cells
b and internal cells. The edge cells are represented by the circles in Figure 3.7 or 3.8; the
i‘ boundary cells are the squares. Figure 3.9 defines the operations of these cells. The
‘ edge cells compute the rotation vector ¥y, which consists of a sequence of £1 or 0 as
;:.! discussed previously. This vector ¥ is then passed to the internal cell on its right. The
%:’ internal cell then rotates its (x,y) vector by the value specified by y. These operations
B are performed down the length of the affected rows.
Each cell of the triangular array stores an element of the upper triangular

.: matrix R(n) from Equation (3.1), and it is initialized to zero for internal cells and to
: a1 for the edge cells. Then, each row of cells in the array is used to combine one row
of the stored matrix with the data received from the above cells. As discussed

previously, the array maintains its upper triangular form throughout the computations.
:' A delay of one clock cycle per cell is incurred when passing the rotation
? parameters along a row. Therefore, it is necessary to “skew” the input data as seen in
; Figure 3.8, so that the input data interacts properly with the previously stored
< triangular matrix. Because the cells are all operating simultaneously, the data in the
fn. system at any time t consists of values from (2n) different matrices. Figure 3.10
demonstrates this for a system with n=3. In the figure, we can see that at time (t+5),
» there are also values present from the five previous matrices (i.e. t+4, t+3,..t). In
: order to get all the cells in the array to a similar time state, the array would have to be
: clocked an additional 2n-1 (five) cvcles, feeding zeros as input where necessary. At the
- completion, all cells will be at the same time (t+ 5).
&
. 29
[}
o
\
2
‘

-
WIS

N R e S S e e o SR

AP AL N A

e ‘\I'v;_}\ \-;_\-"\-' '\v ‘g 'H " .. g .. \ . K .'

' 51 '42 , 33
23 4 $
¢41 '33 '3;
i d 4
’ 31 ' 22 *ll
i 4 4
' 31 ' 12 *
$ 4 i
'll . -

. & =

-

@ ¢ 8 ¢~ & ¢~ ¢

-

Triangular Systolic

Array

Linear Systolic

Array

TV W Wy ey e S AT LR AT LT A NP N
A% T S RN N T AL ANt P S ol g8

Figure 3.8 Systolic Array Implementation for Parameter Estimation: Old Design.

30

.

Aoy fay 2l va¥ val tad 2028 ‘ab .20 Vol Sl $20 0 00" bl ‘% NN MY W P Ve T W M W W WY IV P alatalat b - OR At dat A0 TN . .‘.1

EDGE CELL
G
x

x' is computed recursively from ":

-1 : ',

x = x 0713 y ‘

- T ot fe1 7§ i h

+«1 it L >0 o

y=0 71 = ® ify =0 or the rotation

would increase |y| !

(t) (t+1) .

-1 if 7, < [.1

4

! o3
INTERNAL CELL ' 3

x . x' is computed recursively from ‘:‘\:

-4 \
Tt T3 W

7in e x' P 7out y' is computed rc::,\u'livcly {rom :
T Tia =7 "3y -

y’ (over the sequence '7‘) .::

- . S

(t) (t+1) T out LI "5;
o,
.~
Figure 3.9 Definition of Cell Operations for Triangular Section. -4

-~

Note that at the same time the triangularization process is being carried out, o

the column vector Py, is also being computed by the right side column of internal cells 3
using v(n) as its input. At the end of the triangularization period (N\), we are ready to f
solve for 9(k + N The data in this triangular array is clocked out to the next array N '
. g N
section that will compute the parameters. ;

3. Linear ‘Array ,
The linear systolic array has been used in previous implementations to solve 3¢

'

for the estimated parameters. The linear section consists of one boundary cell and "
(d-1) internal cells as seen in Figure 3.8. The operation of the cells as they compute o
"

the parameters are shown in Figure 3.11. Note that the cells are different from those :
in the triangular array, increasing to four the number of unique ceils necessary in the .:‘;
. \O
combined system. ’ X
ity
A

]

>

31 "
' .

RS

-

Y W W R P T P T S T gy LR TR R RN T TS T A L L PSS TN I N N R T R TR S
ol "'-."' L oA A NN W ol YERLRLHLR AL AR A o X tn .

s ¥ % AV, - A

NS AR LAY
LA . N

. . .
. . .
- .

§,(o0 ¢ (D) § (L)Y, (0

‘x“'z) ”(tol) f‘(t) .

}1(»1) f’(t) . .
f () ¢ * .
!

olnr
s, t1z *u 1

[

*2
OL
i‘u 3
olnolr
O
OL

1
OOE
OL

l
olnie
OlE

d
(t+2)| [(te1) (t)
Ok

l
(t+3)] [(t+2)] [(t-+1)
(t+1)] | (v)
Ok

!
(t+0)| l(t+3)| (t+2)
(t+2)] [(te1)

Figure 3.10 Data Flow in Triangular Section.

ORI YA

Le

32

ANy

e

"."\ TN TS W \-\ W, Y

Mo
»

AT AT

2N

TN N

ATt A v

n_s_»

. '{"}"I LA

r

NN

o il LR A]
Mo’ 3 "'{' ""'-v

h ¢

-
-

4-'}

)
S
S

\W

L ¢

ey
K A ,l'.

AN N S Py L
.l.- (N y ™ A a>

a
i i)

Z, (n) zi-i (n+1 . Z; (n)
0; 95. 83 >

6y = by- 2, (0 Z,,(a*1) = Z () +2,, 8

Figure 3.11 Definition of Cell Operations for Linear Section.

It is shown in [Ref. 2: p. 36] that the time required to solve for @ using the
linear array is equal to 2d. At the end of that period, the parameters are used as initial
values for the triangular array, and the triangular section again commences operation.

We now turn our attention to the replacement of the linear section by a
second triangular system, and discuss the differences between the two designs.

4. The Use of a Second Triangular Array as the Solution Section

An alternative implementation can be obtained by solving for @ as shown in
Figure 3.12. In this implementation, at the end of the triangularization period. the
data is passed from the first triangular section to the second triangular section in a
reversed fashion. The second array performs the same type of operations as the first;
therefore the cells are identical.

The key to using another triangular section is that, by proper combinations of
rows, we can force zeros into all elements of a given row but one, so that we can solve
for each of the parameters. Also, the fact that orthogonal operations are used makes it
more robust in the presence of numerical errors.

To see how this works, consider an arbitrary set of equations in upper
triangular form as in Equation (3.12). Now;, x, is simply solved as b;.a,;. To solve for
X,, we can force 3,5 to zero by a linear combination of rows two and three. We know

33

O oy ol AT N Lo A o o e S IO

N
Kal K

o

> -

-

B A0S

(\"\‘:\,.&

\--
— -

&

<l‘l ,')’I

e R IR

v

PRI
[N Y

l“' .';l {‘l

hY
»
A

25

2

]

]

A
l‘
[}

Triangulsr Systolic

Array

Triangular Solution

Section

—— deley unite of
one clock cycle

Figure 3.12 Systolic Array Implementation for Parameter Estimation: New Design.

34

A e e L O A R AR A R e

a X% t X, tapgxy; =b
Oxl +a,%, *+ a8y = b2 (3.12)
Oxl + Ox2 + 33Xy = b3

this can be easily accomplished by Givens rotations. Then X, is found to be b,'a,,.
Similarly, by row operations on rows 1, 2, and 3 we can make a;, = a;3; = 0in row
one. Again, solving for x, is a simple operation: b, a,,. These type of operations are
exactly what the triangular array was designed to do.

Figure 3.13 illustrates these operations in matrix format. Note that the array
is initialized to all zeros here, whereas the first triangular section is initialized to %"kx
and o,l.

x00 xx0 XXX oo

000 ®00 xx0 XXX ;

000/ ?|ooo0f ?}jo®o0] [0oxx e

000 000 000 00]
o

-
-
-
0

compute 63 compute 8, compute 6,

o e bl

Figure 3.13 Solution of System of Equations.

T v § \
Totatet,

To see how the system operates, recall the first triangular array at time N.

% "
s
o

Now we must feed the data down into the second triangular section in an appropriate

%

manner so that we can solve for the parameters. The same delay (one clock cvcle per !', ‘
.)N
cell) in propagation of data applies to this triangular section as it does in the first b

section. Hence, we must carefully choose when to sample the array in order to get the

":"-":"v"l

correct values with which to calculate the solution.

®

Figure 3.14 shows the data flow for a simple system where d = 3. The input o
data is skewed as it was in the triangular section. It can be seen that the values a,,, ey
':r:‘

a,,, and a,, are available at times N+ 1, N+d, and N+ 7 respectivelv. Similarly,

.
.
:
.

35

- P
TN

[X4 4

Ty
*s

[4
-

T L IR Tt LIRS TR T S SV T TR/ S e
GG 0 S AR AR I AL

LA AT

AL AL CER L A)

3 Do, |

::: . . *, b i '

K .« %2 b, @ L-"-J LeJ [t [

v ®13 ‘a3 o . ' Lo {o

E‘ Sy ¢ e e ‘Q (o] n

\ OOOLE & EEFE

Ok Gy [B

) ol O [we

Af $ {

X Gap) [o] [o] Lo & B Bl

L ML @ B BN

:.: 1®) ;® =

3 HEHED ¢REEF

" a @ l(:) . @ b | Nez

3 ‘ st

: GELELE QEEECE
N+3 @) I_c— @ E] '] Nes

(4 .
N Y TIPS VAR PP
L0t l. X -I‘-. Ii.f-' >

Figure 3.14 Data Flow Through Second Triangular Array.

36

J‘~J' {

AR

A ATl e T O

A LRI RER GRS

-l w - .

(o
P 3o S 3

)
LJ

TSALLNY

- \ ‘. \v. 2’ a ‘4. " X ‘.. ".". '...' \ . ot \

values b;, b,, and bl are found at times N+4, N+6, and N+8. In general, for anv
size system n, the coefficients a; and outputs bj are available as seen in Table 2. Note
from the figure that the coefficients are “picked off’ from the edge cells at the
appropriate times, while the outputs are found in the rightmost set of internal cells.

TABLE 2
TIMES OF AVAILABILITY OF DATA

coeflicient time available
a . N+ 1

An-1.0-1 N+ 4

an-2.n-2 N+T
bn N+(n+1)
-1 N+((n+3
-2 N+ (n+5)

This new design operates slower than the linear system seen in [Ref. 2: p. 36].
The time to solve for O in this design is equal to the time until b, appears, which is
equal to (3n - 1). This compares to 2n (or 2d) in previous implementations; hence, n-1
more clock cycles are required.

On the other hand, simplification is gained in the manufacturing process since
the number of unique cells is reduced. Additionally, use of the CORDIC rotation
technique allows us to use simpler processors. The tradeoffs to be considered are
simplicity (cost) versus speed.

Y R)
o,
3

IV. SYSTOLIC ARRAY MODELING

A. GENERAL
1. System Equations

We now study a particular “unknown” system and the performance of the
systolic array in identifving its parameters. We will simulate a system both with and
without noise present. Additionally, we compare the results obtained by using floating
point versus fixed point arithmetic.

For purposes of the simulation, consider a plant with discrete time transfer
function

1.322

H(z) = ———e—
(@ = =057

(4.1)

which corresponds to the linear difference equation

v(t)y = 1.5y(t-1) + 0.75y(t-2) = 0.125y(t-3) = 1.3u(t-1) (4.2)
In particular, let the input sequence be

u(t) = sin(3nrt/10) + sin(3nt/S) + sin(3mt/2) + sin(9Int/S) 4.3)

The dimension of the parameter vector is four, defined as & = [-1.5, 0.75, -0.125, 1.3].
In the parameter estimation problem, these values are assumed to be unknown. The
input is “sufficiently rich” in frequency (minimum of n sinusoids) to excite all modes of
the system [Ref. I: p. 74]. Results of the simulations are discussed in the following
sections.
2. Choice of Initial Values

For the recursive a'gorithm, recall that we need to initialize the systolic array
with a parameter estimate 6,8(0) and &,1. The value of 6, which is related to the
confidence in the initial estimate as discussed in Chapter III, is chosen to be one for all
simulations. If some information about 6(0) is available, it should be used when

38

"-P ‘r oo .r'.r‘.r' 'd"i"l"q"d"{"d"d"-f"-I".""J"J".".' RGNy "J‘ CAC ARG UR PO Py

“» \ = \\‘-\ \ N\'\‘.\ \-

-f‘d’i

2 TS A LA RN T LS

pp

A IR e

.
o,

’ 2y =-s TV,

T

POA 4
LYo

a X l:‘ “x

Al

t" u'}l v'.:.

4

AR
y e e
" A2

i

RN

o S

5N

RN od
PR '

determining appropriate initial conditions. In the absence of any prior knowledge ot 8.
we choose 8(0) = 0.

3. Choice of Block Length
We have chosen four different block lengths during the simulation studies:
N = 3,5,10,15. It will be seen in the noiseless case that the parameters exhibit the
fastest rate of convergence when N = 5. However, when noise is present, there is a

tradeofl: the system is more sensitive to disturbances when the block length is shorter.
This is because a longer time block provides for more time averaging, thus attenuating
the effects of noise. Therefore, with more samples available, disturbances have a lesser
effect on the estimates. Hence, we must make an informed decision about what trait is
most important in a specific application.

4. Fixed Point versus Floating Point

In the sections that follow, we also compare the performances obtained when
using floating point processors or fixed point processors. Fixed point arithmetic
operations are performed using finite registers and simple shift operations. Therefore,
they are simpler to implement than floating point operations. Additionally, floating
point operations in general require longer registers (exponent and mantissa) to
represent numerical values, which might add complexity to the processor. Hence, the
simplicity of fixed point arithmetic is desired.

The problem to be solved in the fixed point case is how to convert the input
data values, which we normally expect to be floating point, into fixed point values.
The answer, of course, is to appropriately scale all numbers so that they stay within the
limits of the fixed registers. This task would be assigned to the Analog/Digital (A /D)
converter, and the scale factor used would be in large part dependent on the range of
values of the discrete plant samples.

B. SYSTEMS WITHOUT NOISE

The system under consideration was first modeled in an ideal environment
without noise to verify convergence of parameters. Figures 4.1 through 4.8 display the
results of these simulations. In the figures, the estimated parameters (6, 6,, 6,, 0,)
are plotted along the vertical axis, and the block number is plotted along the horizontal
axis. Block number simply indicates the number of blocks that have been completed,

where N identifies the block size. Specific results for the floating point and fixed point
systems are discussed below.

39

X e g P LI N T P N AT S RS S TN AT AR -.‘-._'..'—.:“;.\'-..' \:.\-"_
7\:’:_&.:‘:;’-"' ,nfl"l'lﬂ,"\f-,:}i': PR LS LR ‘\v“-\ .‘ ‘- o .. ~, IS AN N NN)

R
£ % ‘. .

©

-— o

>
PLENE

o % Ay

-
rd

T At

o
LA

-
R

-

SRR CAN O My L 253

PN AR
.
AR

7’ /
R

‘\')"-‘;l,"

7 ".v

&

P
AN

000 A At N by S RS WEND ST DE RV TR IS

L

Y T 1T T T T
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T

T

T

1

)

BLOCK NO.

T

'

4 Sl ¥ 9'10— 0 g0- I-
SYALINVIVd QILVINLLST

~
-.‘

S et
Sa

13

)
L

Figure 4.1 Floating Point, Without Noise, N = 3.

1

s

40

LALAL BN Pl P

AR

- - T N . roa
o o S - -" o A
\{".ﬂ .‘-’. ,': PR AN TS A A ..\.h'_‘[.th.n}‘; RO

I et ba’ NS bet Fud le? (at KAV BuY Gav ta® gt Gat gy at o 10" e’ Ua® Ua® #a" ¥ 8a° Do e Ba® A\ # 4ot 80 - (T g ¢

‘ 2

; -2

- &
- ©

[

[}

' - o~
o)
=

@

;)

) @]

r 1 —

.] -0 9

! - -

-
- o
; ; : 1 i : I ¥ : o
s 4 ST ¥ S0 0 ¢'0- -
SYALINYVIVd AILVNILSH

2 Figure 4.2 Floating Point, Without Noise, N = §.

41

- .- - LRI - PP TG o " "L M m e -rl-f{\(-’~f"'v’f
e e T e A By NN NN N N NN N AT N PR AT

7 Rl P T e T

i A o

#

-’-\,,."‘.-

F I

a_m_*
e 2

RN

ll-|-1~‘-v-'-k'|-|vu' (PCRPURTY O “§9a B¢a §%a #% 4 oy e din 8’8 4 a6 pt gl “eat Y08 W vy R ,.‘ ta* ..,. RCP IR
U
! b,
s :
i 1
; N ‘
t]
[) - 0
™)
' 1]
[}]
9. f
1, - o !
; 5
» I~ N A
4 d
0
| o 3
']
" t)
L) - ¢
: .
S ¢
Z 3
L] o (
S
—
-0 2 .
.
- \
: - :
| %
; o :
K ;
! [
=~ vy l.
T T T ! T = .
2 St 1) 0 g'0- 1-
SHILINVIVd AILVINILSA 3
.
‘; Figure 4.3 Floating Point, Without Noise, N = 10, 3

7

42

R R RN T L T T T T e T T O R T O O Y T T T TN R T S O T O T O e O Y T TN T VO R ooy
0
(3
]
¢
A
o f
:
| -3 i
\J
z
p '(
-2 N
: - o 3
i X
2
- ©
"
“
- - {
y :
p
2 :
)
_—),
-—m : -
i
\ ~
§ i 3
! “
| o B
i
{, -"
- 0:
"
t
F-. =
. .\
P . A
o : N
L T 1 | J S N
e ST ¥ S0 0 S0~ - ’
SYILINVIVd AILVINILSA -
Figure 4.4 Floating Point, Without Noise, N = 15, ™
- T Fa
43
W
Y
w ‘.’.‘. ‘ -~- ," ,-' ‘.. 0 ~, \')."\'). “ .“ s'\.‘- ‘.‘v'».‘- AN AN AT A \'), A "\ v \x."\-‘-\-'ﬁ

1. Results Using Floating Point Arithmetic
Figures 4.1 through 4.4 show the floating point results for block lengths of

N = 3,5, 10, and 15 respectively. In order to evaluate and compare the relative rates
of convergence, we estimate (by visual inspection) in each case where the parameters
appear to have converged to their correct values. These values are tabulated in
Table 3. [t can be seen that with N = 35, the least number of clock cycles were
required. Therefore, in this particular case, we should choose a block length of five.

TABLE 3

TIME TO CONVERGENCE
(NOISELESS CASE)

BLOCK LENGTH BLOCK NO. . TOTAL
N AT CONVERGENCE CYCLES
3 16 48
5 6 30
10 4 40
15 3.5 52

2. Results Using Fixed Point Arithmetic

The results for the fixed point system are shown in Figures 4.5 through 4.8.
Note that the parameters converge just as rapidly as they did in the floating point
implementation. (The simulations were run on an IBM 3033 mainframe, in which
there are 31 bits available for an integer number.) This indicates that the systolic array
with fixed point processors performs as well as the floating point system. This is a
distinct advantage when we consider the simplicity of fixed point processors as
discussed previously.

C. SYSTEM WITH NOISE

The system was next modeled with noise present. The noise term v(t) is a
sequence of independent random variables identically distributed with zero mean (as
white noise). We use a variance of 0.5 for these noise random variables. The noise is
added to both the incoming signal u(t) and measured output y(t), as would be expected
in a real system. Figure 4.9 illustrates these signals both with and without noise.

44

s
SN
)

@
Rl ','.-)

Ve 2o
‘)'f r

7
('

%% .?&'

f,

A

B 5 » -p .
ANSCAON .'{~(.

26 28 30

24

lh lb 18 20
BLOCK NO.

T
12

I | i |

4 A ¢ ¥ 9‘10 0 S0~
SYILANVIVd QIIVINILSH

45

e o N e o e R I

Figure 4.5 Fixed Point, Without Noise, N = 3,

e
Eath

W

TV TR W W W (VW%

I T R T O O O O T R K T O O O R R T N W IV WU W UV UV VW AW LW T AT R T M i X P o ™27 AL L
o~ ? [g

20

T T
18 19

T
17

| B—
15 16

T
14

r

T T
11 12 13

T
10

T
9

BLOCK NO.

T
8

2 o't r 50 0 g0~ e
SYALINRVIVd AILVIILSA

Figure 4.6 Fixed Point, Without Noise, N = §,

46

L AR MRS AT i

20

T T
18 19

T
17

T T T T
13 14 15 16
f(f“

T
12

T
11

10

1

T
9

BLOCK NO.

T
8

2 gpma

T
6

ot B WY

T
3

.-

-~

2 1 I g0 0 g'0- 1-
SYALINVIVd JILVINILSA

PP XA

[

Figure 4.7 Fixed Point, Without Noise, N = 10.

o
~
»
&l
K
-

47

....................

- L) - LR W L B LTS NI e W Y 7 Y I ’ ‘. .
AL T e IR N TG b Yo S G AR SR Y

COA AR S A RS

T
8

7
BLOCK NO.

~ N

) i IR 1 ! . o
e ST I S0 0 G'0- -
SYALINVYVA QALVKILST

XN,

Figure 4.8 Fixed Point, Without Noise, N = 15.

438

AT SR
n 8 el - z

A OO I I oI TN e NN

IO AT A U LA \

oS, P

A e e e aeea At
R R D Iy Ry N N Syt (Y%, AU, R ot S R e SR ot Sty R A N ey

) R - Nk . N ") a4 gt v, - Ta¥g” ¢ ale™ S G At Be0 Pe (3 ™1 M W - on
-
<
Z
=
n
T
' ' i [| ' ' 1 I
0 5 10 15 20 25 30 35 40 45
TIME
Figure 4.9a Input and Output Signals Without Noise Present.
o
c -
v —
-
<
Z o
=
n

-4

-12 -8

)] T l) 1 1 [¥

5 10 15 20 25 30 35 40 45
TIME

Figure 4.9b Input and Output Signals With Noise Present.

49

-F-'(-J‘ SR AT N

WA

.‘- ..-..

A

> o
Sy

S, 4 T
vy i - P

>,

X4

vt

EDKRE e r P T

] AR

y % v Y

$%Y

1. Results Using Floating Point Arithmetic
Figures 4.10 through 4.13 display the results for the four different block
lengths. With N = 3, noise causes the parameters to vary considerably. When N = 3

or 10, disturbances are less likely to affect the parameters. When block length is equal
to 10, the parameters have converged reasonably well within three blocks (or a total of
30 cycles). For N = 15, we see that the parameters are least affected by the noise, as
expected. Here we find the relative convergence time is about three blocks, or 45
cycles.
2. Results Using Fixed Point Arithmetic

The results for fixed point implementation are shown in Figures 4.14 through
4.17. Again we note that they exhibit the same performance as in the floating point
cases. Effects of block length are the same as noted previously.

50

RN AN A N N R T Sy

X I I

-

£ S RN

:
L
:
:
:
:
:
:
:
:
:
:

26 28 30

20 24

14 16
BLOCK NO.

T
12

- O\

i

gt

SYALINVIVd AALVINILLSH

1]

T
¢ G0 0

g0-

Figure 4.10 Floating Point, With Noise, v = 3.

51

20

.
19

18

T
17

T
15 16

L
14

T T
11 12 13

T

10

9
BLOCK NO.

9'lI }— G'B
SYILINVEVd QALVIWILST

Figure 4.11 Floating Point, With Noise, N = 5.

. A M Al Rl ad B ‘R A A S R AR B - WP YL e », { y
v g% Oyttt et et et T RR 2 ' gt Baftoind v e 8% 4% e b I v b o d Rl - -X i ol

, =~
N
K
I'.' - 2
' =
3
W _ t
v | ©
-—f
b,
’ |0
-, -
v
g | -
Y -
o
[™
» ' b
b Y
‘!
3 |~ o~
5 - %
- =
s -4
> O
> - O
|
~
pon =
> - ®
T, -~
" L ©
N L 0
- .
7,
:I
. - ™
d
NG . o
-f':' -
:‘:' I : T T =
- 2 ST I S0 0 S'0- 1-
"
Ny Figure 4.12 Floating Point, With Noise, N = [0.
~
I.’ -
N
A 53
[}
[M
L
g
‘\'
N
'-.;,\. Nt N M N A A A A M T S \u’-.'\':\\"\"'..’ NN x’-."-."'-.."-."-s”\'-."-.':\"-.’-;"\'- '\"'{.'-:"-;"

AN O e’ u R s . i) "o Ve S MY W - WV W W W

T T T T T T T T T
10 1 12 13 14 15 16 17 18 19 20

9
BLOCK NO.

- -y

2 g I g0 o go-
SYILINVEVd QILVNILST

Figure 4.13 Floating Point, With Noise, N = 15.

R A s I SR N SN S

TR

RO

. e
0
Onn

g i a abd " aba®, v
. cate nis 2t oo val. ‘sl * Q - w L W A 4 S
b LVAS MY WUy & - v 9. AN SR O ¥y - .

30

14
BLOCK NO.

P i D :

i 1 LN . =
o't I S0 0 g0~ 1-
SYILINVIVd AILVINILSH

Figure d.14 Fixed Point, With Noise, N = 3.

(o
(¥

LR ot e . \ et RS - 1
N N R S NN e A e A

-

‘a2 Tt

? Sdoi

n g

4T 3 O

T T 1 o3l

PR AR AL

)

.-.'..,:

.

.
r

A AL AL

T R T T oo il o e O LY
..A....‘_..rnuf..wl.;..‘.-....l.&\v\ o Y et 0 . L AEALNREN - AN Y ARAANAISY WAL

‘ON XD01d
02 61 g1 21 91 ¢I ¥%1 g1 ¢t 11 O} 6 8 L 9] 14 e e 1 0
1 | | } 1 | } 1 i 1 | L 1 { 1 | 1 1 |]
Sy
[)
-Q v
93 "
[7)] 7.
| I
19 m
2 ownv >
T e e 8 * v+ S b b s e e n s e s o et TR T s n = e e ——_. + + * % 2 % % a s s et PRl . . . acvmaem e L Im
I
.o =
gmm S A
=s o
va =
i
| - [T]
-3 N
H o
.. 1
v =)
.. nm.w. i 2
2
¥
ol
&
[&
1Y
r...n

vt

o

-

A\
3

b

- - - - o pav guv ¥ et e 0a AT e NP g - gita ‘ot Ov B2 7
PTIC Xoa W 4 YR PO PJCRIO P AR AU TR VOW WO \ W .

19 20

r
18

T
17

T
16

T
15

1_
14

1
12 13

IIO l‘l
BLOCK NO.

T
9

\ gz st 1 50 o go- I-
' SYILINVIV] QILVIILST

Figure 4.16 Fixed Point, With Noise, N = 10.

L)

O

O TORELN T T TN TON TUN \ (X"

15

11

- I~

BLOCK NO.

r— T =T T T ; o
e S1 I S0 0 g 0- 1-
SYALINVIVd A4 LVINILS

Figure 4.17 Fixed Point, With Noise, N = 15.

58

V. CONCLUSIONS

The estimation of parameters using a parallel structure has been described in the
preceding chapters. In this chapter, we discuss tradeoffs, advantages, and
disadvantages of the various systems we have investigated.

Several possible conditions have been simulated in order to investigate the
behavior of the parallel algorithm. We saw that the parameters converged well under
all conditions, even in the presence of noise. Use of block processing tends to average
out the effects of noise, perhaps at the slight expense of convergence rate.

A parallel algorithm suitable to hardware implementation has been presented in
this research. The main contribution which distinguishes this algorithm from others
available in the literature is the fact that we have replaced two different processors by
two identical ones. With previous designs, a total of four different computing cells
were required: two for the triangular section and two for the linear section. For the
new design, we see that we need only two types of cells. These are the edge and
boundary cells, whose operations were described in Chapter I11I. However, this new
system also needs more total cells. Specifically, it can be shown that an additional
2d(d+ 1) cells are necessary, where d = dimension of system. Even for a sixth order
system (d = 6), this requires only 21 additional cells. In a VLSI scheme, additional cells
are considered inexpensive.

The second triangular section is somewhat slower than the linear section. We
saw in Chapter III that (d-1) additional clock cycles were required to operate the
second triangular section.

The functions of the cells must also be considered. The use of the Givens
rotation by Equation (3.2) requires the use of a processor which can perform squaring
operations, obtain square roots, multiply, divide, and do simple add and subtracts. Use
of the CORDIC technique greatly simplifies the operations, in the sense that rotations
can be implemented by use of addition and shifts only. Note from Table 1 that after
rotation, the vector has increased in magnitude by the amount listed in the column k..
This is easily compensated for by performing a right shift (division by 2) every other
rotation or so.

59

LNy AT LA NI T N

[

){7

¢

X

Nldicxa’

AL

RIS o
» " '.

"l $

P AL R L

3

.
’

A

[-',’ c .
_e

oy

oAy

s

fsf.‘f~ - e

«
|

Another important consideration is the use of fixed point versus floating point
arithmetic. We saw in the simulation that the simple fixed point processors perform
equally as well as floating point processors.

When the results of this thesis are considered, we see that a systolic array using
the CORDIC technique presents an attractive means of implementing the parallel
algorithm to identify unknown system parameters. This, in turn, leads to important

applications in adaptive control systems and real time identification problems.

60

A
4

e b g l‘\ﬁéi

PR,

e

)40

IY""'-} .JIT

MO Y %

g

P f'I

o, v""..,.

"."‘

s&\‘,‘: s

@2’

A (&;

O P T W R WU R U P LR PURT VWO U0 J0oT Og0T RO O Ty TS 4t daraaaL T T Y YT T YUY YRR Y YT

M
)
c‘!
o APPENDIX
N PROGRAM LISTING FOR SYSTOLIC ARRAY SIMULATION
)
X
> This program calculates the parameter estimates for a discrete time linear system.
; " . It is written in Waterloo Pascal. In accordance with Pascal syntax rules. the size of the
)
s arrays must be defined in the declarations. Hence, one must know the order of the
" svstem to be modeled before attempting to use this program.
3
) program systolic (input,output);
! const . . . ,
. dimension = 4; plusone = 5; (* dimension is order of system *)
0 (2 L Sy
o ggmmacount = 30; 2* anticilpated max number of rotations *)
) imerstop = 15; * used as index in main *
s’ type
@ gamma_vector = record
o pi: boolean;
L scale_factor: real; .
pagams: array (.0..gammacount.) of integer;
b end;
! amma_array = array 2.1..d@mension, 1..plusone.) of gamma_vector;
W) heta_array = arrag .l..dimension.) of real;
Y u_array = array 2. ..dimension, 1..plusone.g of real;
:4 _ a_array = array (.l..dimension, l..plusone.) of real;
N var
gamma: gamma_array; (* direction of rotations *l
- gamma2: gamma_array; (* direction of rotations *)
> a: a_array;
>, a2: a_arra¥;
; theta: theta_array;
rs u: u_array;
B uz: u_arraK; i .
bt i,j,k,block_length,count index: ;nteger;
timer: integer; (* timer variable)
sigma: real;
- ch: char;
) h,m: text;
e,/
LAY
N
" ***)
- rocedure initialize (var sigma: real; var block_length:integer);
y var
™ i,j: integer;
A begin
' for 1 1= 1 to dimension do
S for j:= 1 to plusone do
» a ed,] t= h
o writeln; writeln(m); .
- : writeln ('Initialize the systolic array');
X writeln (m,'Initialize the s¥st911c array');
e writeln ('Choose the value o 51gma')i writeln;
) writeln (m,'Choose the value of sigma i; writeln(m);
. . readln (sigma); writeln (sigma); writeln(m,sigma);
Y writeln; writeln(m); g _
writeln ('Now enter the initial estimates of');
i 61
o
)
b))
M
M
)
o

P I I R I P R VLI LI

." B L o o A T T T T A e S T PR SR R AR -'.-.{,n,‘..- AT ST AT B T \‘_\,\\.'\Jh‘_\"\.‘\u
v W% A% R Bic ® u B . 2 Ras Latall B W . " PRy 3 a B o L %®. 5.

r!llll!!!!!!!lll!!!!!!l'!!!!!!!!!!!!1l!'E!!!!!!F!!E!1!!!!!ﬂ!!?ﬂ!:PE?1!1?1F7!1??R?!R!T?i?ﬁ?ﬁ!ﬁ!ﬁ!!!ﬁ?ﬂ?ﬂ?i!OﬁOﬂOT'

writeln §m,'Now enter the initial estimates of');

writeln ('the vector theta in order requested'); writeln;
writeln (m,'the vector theta in order requested'); writein(m);
for i := 1 to dimension do
begin .
writeln 2'Theta i =),
writeln (m,'Theta ' i,' = ';- '
readln (a(.i dimension + 1. g‘ writeln; writeln(m);
writeln 23(.1,§1men51on + 1.0 writeln;
wrételn m,a(.i,dimension + 1.5); writein(m);
end; .
writeln §'Enter the block length desired');
writeln (m,'Enter the block length desired');
readln (block length%;
writeln éblocE_lengt 14) ;
writeln (m,block_leéngth:4);
for i := 1 to dimension do
for j := 1 to dimension do

. at.1,3. =0,
for i:= 1 to dimension do
begin]
a(,i,i.,) := sigma * 1; _ .
write (m,a(.i,dimension + 1.):9:4); (*write initial values¥*)
a(.i,dimension + 1.) := sigma * a(.i,dimension + 1.);
. end;
dl := 0;
2**)

*

e
(

**********************************k**********************************)
Procedure reinitialize (sigma: real);

var =
i,3: integer;

begin |))

for i := 1 to dimension do
for j:= 1 to plusone do

. a2 «1,]. = V3:

i := 1 to dimension do

.i, plusone.) := sigma * theta (.i.):
.1 to dimension do

= 1 to dimension do

for
a (
for i :=
for j :
, a (.1,]. = 0

for i := 1 to dimension do

4 a(.i,i.) := sigma * 1;
%2***k****************)

L SIS

—~

(***)

Procedure internal (x:real; var y,yout:real; var gammain, gammaout:
gamma_vector);

(* This procedure performs the rotation on the x-y pair, given the
amma vector which contains the number and directions 'in which
o rotate. The new values of the x-y pair are passed out *)

W R

(" x‘

var
i: integer;
old_x, old_y: real;

'.{a " L]

;e
2's

Procedure scale (var x,y: real; magfactor: real);

begin
X:= X * magfactor;

e
" .‘

4&5{.'

{‘(v"(

62

a7

7
:“1

PN N VR O DN U Y U P OO G G O O OO OO AR ¢ S g g0 R et Bav fot fu” e~ ot It POV TR TR R W VU OV WU WL W
n

;ﬁ y:= y * magfactor;
e end;
0
f;'t
£
Function two (i:integer):real;
(X (* This function calculates the exponentiation of the integer 2 to
o the power (=i) *)
')
k} var
) n: integer;
* r: real;
. begin
v g £ = 1;
- if 1 = 0 then two := 1
o else for n := 1 to i do
; r :=r * (1/2);
::: two := r;
By end;
W begin ,)
KN if q:mmgln.pl then
A egin x:= -Xx; y:= -y; end;
I old_x := x; old_y := y:
s 1 := 0; , ,
% Whlﬁf (gammain.params(.i.) <> 9) and (i < gammacount) do
egin
ifgq:mmgin.params(.i.) <> 0 then
egin
i; X := old x + gammain.paramsé.i.; * twoiig * old_y:
y. := old_y - gammain.params(.i.) * two(i) * old_x;
R, old_x := x; old_y := y;
o R A
' 1 := 1 H
':‘ end; .
scale (x,y, gammain.scale_factor);
rx yout := y; y := X;
’ gammaout” := gammain;
;. %2**)
W
L <
) (Fekeskdededede ek sk ke ok ek ek gk ke sk sk ke g sk ke ek sk k)
,2 Procedure edge (x:real; var y: real; var gamma: gamma_vector);
) (* This procedure builds the gamma vector based upon the values of
s the x- fpair. The gamma vector contains only the values -1, 0, 1,
g or 9. -1, then the vector is to be rotated counterclockwise.
P If +1, then it must be rotated clockwise. The value is set to
L zero if the next rotation would cause the new absolute value of
Yy to be greater than the previous absolute value of y. This way,
o we can grevent the rotation from taking place and cause the
N values to converge quickly. The value of 9 is placed into the
o gamma vector once a pre-determined lower limit of y is reached,
- and it signals that no more rotations are to take place. *
- const)
) low_limit = le-6;
var)
> i : integer;
B temp_x, temp_y: real;
Y,
i
N 63
)
5
1)
[

~_ -
L3

e
¢

U LR T S I S LI N R S VAN SRR TS T Tl NN Sl Ny Sl -"-"_-."-_’.-_“-"._
o “F?thﬂhkghaJhaxJJJNJQJQJJJJMuudﬂi

V A LR S TR S S

R AV 'R oY

Function two (i:integer):real;

(* This function calculates the exponentiation of the integer
2 to the power (- *)

var]
n: integer;
r: real;
: begin
r :=1;
if 1 = 0 then two := 1
else for n := 1 to i do
r :=r * (1/2);
two := r;
end;

Procedure one_rotation (xX,y: real; var temp_x, temp_y: real);

(* This procedure is used to do a rotation on the x-y pair.
The 1input values of x and y are not changed, but the

rotated values are passed out as temp_x and temp_y. *)
var '
temp_gamma: integer;
begin L
if y > low_limit then temp_gamma := 1
else temp_gamma := -1;)
temp_x := X + temp_gamma * twoz;; W'
temp_y := y - temp_gamma * two(i) * Xx;
end;
begin 0
1 :=0;
if x < 0 then begin) (* initialize if x < 0 *)
X := =X; Y :< -y; gamma.pi := true; end
else gamma.pi := false; L
gamma.scale_factor := 1;) (* initialize scale factor *)
whl%: (abs(y) > low_limit) and (i < gammacount) do
egin

one_rotation (x,y,temp_x, temp_y);(* check to see what rotated *)
. * values of x,y will be *)
whzﬁ: (abs(y) < abs(temp_y)) and (i < gammacount) do

egin) * repeat this loop until new *;
gamma,p:r?ms(.z.) := 0; *y<oldy *
1 =1 H
ong_rotation (x,y,temp_x, temp_y);
end;
if y > low_limit then gamma.params(.i.) := 1 (*do CW rotation *g
else if y < -low_limit then gamma.params(.i.) := -1; (* CCW *

i:=1i+1;

X 1= temp_X; 1= temp_Y; * ypdate the rotated values*)

ify»> lgw_iigit thenpggmma.paramsé.i.g 1= 1

else if y < -low_limit then gamma.params(.i.) := -1; ‘

if 1 = 1" then gamma.scale_factor:= 1/s?rt(2) i* update scaling *)

else gamma.scale_factor:= gamma.scale_factor *
cos(arctan(two(i-1))):

end; . (* while *) _
gamma.params(.i.) := 9; * end of rotations *)
dy := X * gamma.scale_factor; * gcale final values *)
end;
(e s sk ok e e gk e o e e e e Fe e e T e o 7k e e e Fe g e Fe s Je gk sk e e Tk e e g e e K A ke e e e ok e e ok e sk ke e T ok ok ok ok k e ok ok A)

64

e e e e e D o A AP e

DCACILEELL L8
o
“»,

AL T

%

.'l}f

o
»

Loy

>
X ok g S 4
b 'y

L

E

2

<5

i

.

3

Y

L% 0 e N)
Pl
QIS

-

@ /LI IS ILe

XN,

o AL
ﬁ?

P

LN N

¥
ROODOOOG i

begin (* main *)
reset (h, 'data text al');
rewrzte(m 'outfile text al');
1n1t1a112e (sigma, block_len th)
for timer := 1 to timerstop
begin
for 1ndex := 1 to block_length do
begin
for j := 1 to d1mensxon + 1 do
read (h,u(.0,j.

readln (h);
for k := 2 to 2 * dimension + 1 do
begin ' ,
for i := 1 to dimension do
begin
= - 1
if ix<= i} and (j <= dimension + 1) then
edin
if'i = o
elseEdge (u(1 1,3.), a(.i,3.), gamma(.i,j.))
internal (u(.i-1,j.),. a(i, i.), ué.i,j.?,
amma i. J-) gamma(.i,j.));
end; * if i *)
end; (* for i 1 to dimension *)
end; (* for k *)
end; (* for index *)

(* solve system *)

a2 plusone) := a(.dimension, plusone.); * a into a2

theta (.dimension.) := a2(.1,plusone.) / a2(.1,1.);
count := dimension - 1;
whlle count >= 1 do

azz .1,1.) := a(.dimension, dimension.); 2* shift bottom of *;

egin
fog g dlmen51on downto 2 do (* shift down a matrix *)
or k := 1 to plusone do (* and feed into u
a .J, k.Y = a(.j-1,k.);
for 3 1 to dimension do
. := a(.dimension, plusone -):
u2(. 0 plusone He a(.dlmen51on plusone %
for k := 2 to 2 * dimension + 1
begin .
for i := 1 to dimension do
begln

1.
if &; <- 'S and (j <= dimension + 1) then

1f 1 = jt
edge (uZ(i-1,3.), a2(.i,j.), gamma2(.i,j.))

se
((ga%maZ((- i ‘l -1)O ’ ggma () i J))

end; (* if i
end; (** for kl* 1 to dimension *)

end;
theta (.countzf := a2 (.dimension - count + 1, plusone.) /
imension - count + 1, dimension - count + 1.);
count := count - 1;
end; (* while *5

for i := 1 to dimension do (* write out values *)
write (m, theta (.1.):9:4);

relnztiallze §51gma)
den ; or timer *)
end.

T T L A 1 P g eg . PA S Tt S VR T R o N 3 A P A A A Sl ’s"'\. \. RIS Y n N \.'"-."\ -.

. Y " N 0 0 g
ata A% 8a A¥a A'acd’s 8°2.4% R TWLTTCR WS T0 T T TN T oM PR R TN g WL W e WL R WL W WS O, " u A AN W T 4

LIST OF REFERENCES

1. Goodwin, G.C. and Sin, K.S., ddaprive Filtering, Prediction and Control, Prentice-
Hall, 1984.

2. Kim, Yong Hong, A Parallel Structure for On Line ldentification and Adap:ive
Control, Masters Thesis, Naval Postgraduate School, Monterey, California,
March 1987.

3. Kung, H.T. and Leiserson. Charles E., "Systolic Arrays (for VLSI),” Sparse
Matrix Proceedings, SIAM, 1978,

4. Stewart, G. W., Introduction to Mairix Computations, Academic Press, 1973.
5. Haykin, Simon, Adapiive Filier Theory, Prentice-Hall, 1984.

6. Ljung, Lennart, and Soéderstrom, Torsten, Theory and Practice of Recursive
Identification, MIT Press, 1983.

7. Hsia, T.C., System Ideniification, Lexington Books, 1977.

8. Schmid, H., Decimal Computation, John Wiley and Sons, 1974.

66

LG ,\..;"h"‘ 1 .N‘h \) .’-\-,‘- RS .‘v-_- " -.‘ ~‘ \ e N -.\ A AT NN AN I e e et e S

v
& % TN

l; " o, .’\"'.{\'.ﬁ‘

(N

o
&

"c{ﬁ ..1 -

N o %
I

v‘: -{

(L

o

S SRNT B

.

D R o R T e N N T O T T T T T O T O R T Ny N U U O U™ WY VT AN W W s
¥

R

N

i

) BIBLIOGRAPHY

" Anton, Howard, Elementary Linear Algebra, John Wiley & Sons, 1984,

4 Cristi, Roberto, A Parallel Structure for Adaptive Pole Placement Algorithm, 1o be
i published, March 1986.

~ Jennings, Alan, Matrix Computation for Engineers and Scientists, John Wilev & Sons,
& 1977.

:{ Noble, Ben and Daniel, James W., Applied Linear Algebra, Prentice-Hall, 1977.

i~

A

!'

o

2

l.

- o’{-

£

SASINDN

R

o
P P P N X

i

67

™

n;"v

~

o R et T A TR At T Aa A" AR R T N AT AT -v'\~\ -.Aw‘.-\.-.-..‘

TP e , ‘ ¥ : 23t te° b TV TN AT

INITIAL DISTRIBUTION LIST

No. Copics

I. Defense Technical Information Center . 2
Cameron Station
Alcxandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Prof. Roberto Cristi, Code 62Cx 1
Department of Eiectnical and Computer Engincering
Naval Postgraduate School
Monterey, CA 93943-5002

4. Prof. Sherif Mickac!, Code 62Mi l
Department of Electrical and Computer Engineering
Naval Postgraduate School
Montercy, CA 95943-5002

5. Major Richard Adams. Code 52Ad 1
Dcpartment of Computer Scicnce
Naval Postgraduate School
Monterey, CA 93943-3002

6. Paul A. Willis 2 :
17120 Via Pasatiecmpo
San Lorenzo, CA 94580

7. Mr. V. V. Saba - 1
717 Carlin Ct.
Carmel, IN 46032

8. Mr. Joscph Smulewicz 1
5172 Sabin Ave.
Fremont, CA 94536

9. Dr. K. Bromley,
Code 7u4It
108C
San Diego, CA 92152 1

10. QP - 02
Undersea Warfare
washington, D.C. 20350 A 1

{
X

7

'I
LR
Nt

<
..l
N
Lo,

DR CE LA gt
A AT X AN

i X G N

x5 Rl ‘I-O i

5 o A \5‘,}‘,\ A '&.;«.

" P red 2 .*Kr 5% 5

A ,Ef‘f.::,?
S

R

Wl
"‘c.. l‘.l‘:e'.:‘ﬁ

< == -
., N
._:.'k::&? -\\
= 2
A e (125

o
h

0,888

.- -
RN A el l]
A 'iu.
T T s

F il ;.5»
r\l'.l LA
S de P,

et X € 55

"y
-

P s
[

Y ‘-;v
s AN
-‘.
l' ".‘,

;: P
-l l"l

2

:' oF

o]

"l

P o QUL LB R
AT ST
5w < LS j
s » Pl st
N - =

Yal 3k ';‘1&1 J.‘ & v,

f'.s.' -’.'f FéEFS

- o T - -

4 L 4 - - w v v - L 4 L 4 L 4 4 o
o

v - -

- aT8 % 0"0 a"6 a"0 0%8 10" T W TR VS L T YT e g SHSAS T "y
B B g s, 1 s N A o P e Y o A
M‘x‘vn,u,n.lnf‘s‘l Voha s N, "(*'.-‘-“.\‘Ua RO N AN A MNP S oAl A e S
st e N e O A O R Oy s St ot e e S o T N T 22,
:’i;‘l'g‘lg‘l"i.‘ll‘\o‘l. 0 W) AL YN LA P ’ ’\fn, e Moy i
'c"'\".’l‘!‘\"“l"“'!‘0“;':‘:‘!‘:“'&:’ l!'l w \ ..' '. ¥ ‘ " ~ "}I' ‘(¢ 4)3’ l. ' (R) GRS * < “.'

e, e L B 0

